Rolling Bearings Classifications

Rolling bearing construction

Most rolling bearings consist of rings with raceway (inner ring and outer ring), rolling elements (either balls or rollers) and cage. The cage separates the rolling elements at regular intervals, holds them in place within the inner and outer raceways, and allows them to rotate freely.

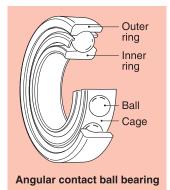
Classification of rolling bearings

Rolling bearings divide into two main classifications: ball bearings and roller bearings. Ball bearings are classified according to their bearing ring configurations: deep groove type and angular contact type. Roller bearings on the other hand are classified according to the shape of the rollers: cylindrical, needle, tapered and spherical. Rolling bearings can be further classified according to the direction in which the load is applied; radial bearings carry radial loads and thrust bearings carry axial loads.

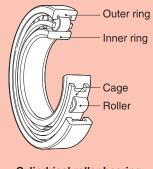
Other classifications

- 1) Number of rolling rows (single, double, or 4-row),
- 2) Separable and non-separable, in which either the inner ring or the outer ring can be detached.
- 3) There are also bearings designed for special purposes, such as Automotive and other applications

Deep groove ball bearings


The most common type of bearing, deep groove ball bearings are widely used in a variety of fields. Deep groove ball bearings include shield bearings and sealed bearings with grease enabling easier usage. Deep groove ball bearings also include bearings with a locating snap-ring to facilitate positioning when mounting the outer ring. These type of bearings supports radial load on both directions. Deep groove ball bearings are also classified into Thin series, Light series, Medium series and Heavy series ball bearings.

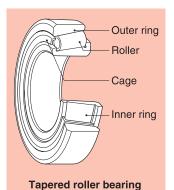
Deep groove ball bearing


Angular contact ball bearings

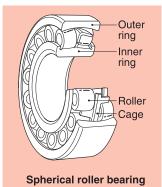
Angular contact ball bearings unite point of contact of the inner ring, ball and the outer ring runs at a certain angle (contact angle) in the radial direction. Bearings are generally designed with three contact angles. Angular contact ball bearings can support an axial load, but cannot be used as single bearing because of the contact angle. They must instead be used in pairs or in combinations. Angular contact ball bearings include double row angular contact ball bearings for which the inner and outer rings are combined as a single unit. The contact angle of double row angular contact ball bearings is 25°. These type support certain amount of combined loads.

Cylindrical roller bearings

Cylindrical roller bearings use rollers for rolling elements, and therefore has a high load capacity. The rollers are guided by the ribs of the inner or outer ring. The inner and outer rings can be separated to facilitate assembly, and both can be fitted with shaft or housing tightly. If there are no ribs, either the inner or the outer ring can move freely in the axial direction. Cylindrical roller bearings are of different types, like N, NU, NJ, NUP, NF depending upon the construction of inner and outer rings. Cylindrical roller bearings are designed with multiple row rollers and full compliment rollers without cage depending on the applications. These bearings are suitable for heavy radial and impact loading and are appropriate for high speed applications.



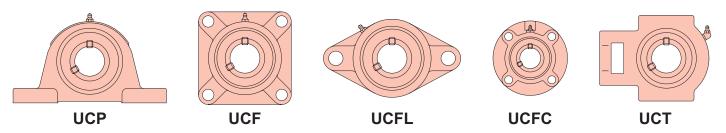
Cylindrical roller bearing

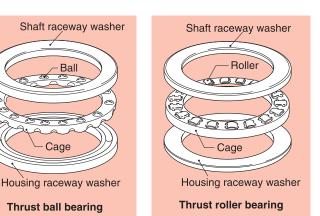

Tapered roller bearings

Tapper roller bearings are designed such that the outer ring, inner ring and the rollers have tapered surfaces whose apexes converge at a common point on the bearing axis. Tapper rollers are available in metric as well as inch dimensions most commonly called as metric series and inch series. Tapper rollers are available in Single, Double and four row, these type of bearings are suitable for Heavy and Impact load application and can take both radial and axial load simultaneously.

Spherical roller bearings

Spherical roller bearings are equipped with an outer ring with a spherical raceway surface and an inner ring which holds two rows of barrel shaped rolling elements, spherical roller bearings are able to adjust center alignment to handle inclination of the axle or shaft. There are varieties of bearing types that differ according to internal design. Spherical roller bearings include as type equipped with an inner ring with a tapered bore. The bearing can easily be mounted on a shaft by means of an adapter or withdrawal sleeve. The bearing is capable of supporting heavy loads, and is therefore often used in industrial machinery. Gages for these bearings are of both steel and brass depending on the applications.

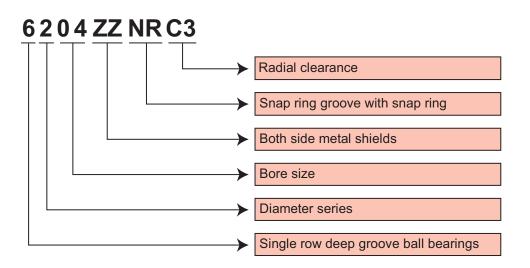

Thrust bearings


Thrust bearings are classified in accordance to the rolling elements they contain and generally the allowable rotational speed is very low.

Thrust ball bearing with single row is called as single direction Thrust ball bearings and can take axial load in one direction, whereas Thrust ball bearing with double row is called as double direction Thrust ball bearings and can take axial load from both directions. Thrust bearings with rollers as rolling element can accommodate a certain amount of radial load along with axial loads.

Ball Bearing unit

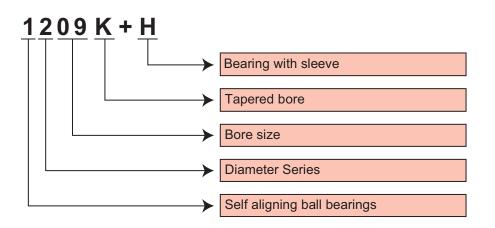
A ball bearing unit is comprised of a ball bearing inserted into various types of housings. The housing can be bolted onto machinery and the inner ring can be easily mounted on the shaft with a set screw. This means the bearing unit can support rotating equipment without special design to allow for mounting. A variety of standardized housing shapes is available, including pillow and flange types. The outer diameter of the bearing is spherical just like the inner diameter of the housing, so it capable of aligning itself on the shaft. For lubrication, grease is sealed inside the bearing, and particle penetration is prevented by a double seal with 3 lip


Rolling Bearings Classification

Bearing Designation, prefix and suffix

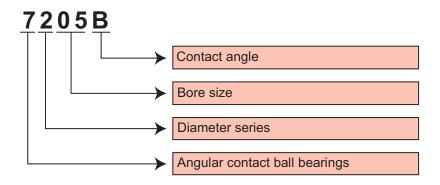
Rolling bearing part numbers indicate bearing type, dimensions, tolerances, internal construction, and other related specifications. Bearing numbers are comprised of a "basic number" followed by "supplementary codes." The basic number indicates general information about a bearing, such as its fundamental type, boundary dimensions, series number, bore diameter code and contact angle. The supplementary codes derive from prefixes and suffixes which indicate a bearing's tolerance, internal clearance, and related specifications.

Ball bearings



Bearing type	Bearing series	Diameter series
Single row ball bearings	68,69,160,60,62,63,64,622,623	8,9,0,0,2,3,4,2,3
Double row ball bearings	42,43	2,3

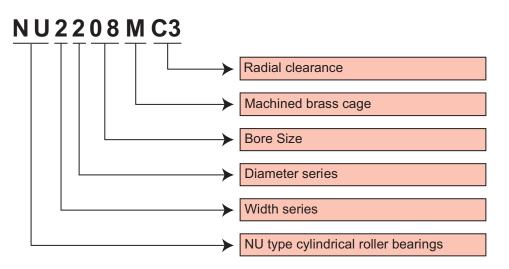
Prefix	Description	Suffix	Description
F	Flanged outer ring	СМ	Electric motor clearance
RLS	Inch type ball bearing	C2	Radial clearance lesser than normal
RMS	Inch type ball bearing	C3	Radial clearance higher than normal
		C4	Radial clearance higher than C3
		DDU	Bearings with non contact type rubber seals
		LLU	Bearings with contact type rubber seals
		М	Machined brass cage
		N	With snap ring groove
		NR	Snap ring groove with snap ring
		P6	Precision class 6
		z	With one side metal shield
		ZZ	With both side metal shield
		ZNR	With one side metal shield and snap ring groove with snap ring


Self Aligning ball bearings

Bearing type	Bearing Series	Diameter series
Self aligning ball bearings	12,22,13,23	2,2,3,3

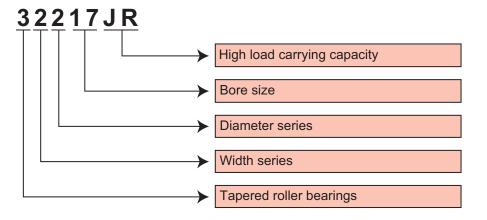
Prefix	Description	Suffix	Description
		К	With tapered bore
		+H	With adapter sleeve

Angular Contact ball bearings



Bearing type	Bearing Series	Diameter series
Angular contact ball bearings	72.73	2,3
Double row angular contact ball bearing with filling slot (maximum capacity)	32,33	2,3
Double row angular contact ball bearing without filling slot	52,53	2,3

Prefix	Description	Suffix	Description
		А	30 degree contact angle
		В	40 degree contact angle
		TVP	With reinforced polyamide cage
		С	15 degree contact angle
		М	Brass cage


Cylindrical roller bearings

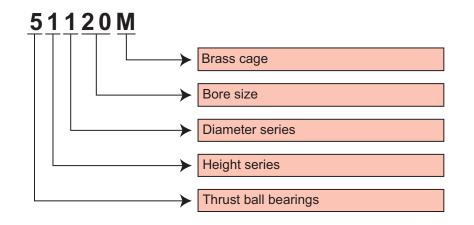
Bearing type	Bearing series	Diameter series
Cylindrical roller bearing	2,22,3,32	2,2,3,3

Prefix	Description	Suffix	Description
Ν	Bearings with both side sliding outer ring	N	With snap ring groove
NJ	Bearings with one side sliding inner ring	NR	Snap ring groove and snap ring
NU	Bearings with both side sliding inner ring	V	Full compliment bearings
NUP	Bearing with fixed inner and outer ring		

Tapered Roller bearings

Bearing type	earing type Bearing Series	
Taper roller bearing	320,330,331,302,322,332,303,313,323	0,0,1,2,2,2,3,3,3

Prefix	Description	Suffix	Description
HC	Hi-cap	D	Steep contact angel (24°~32°) metric series
HM	Heavy medium duty inch series	JR	High load carrying capacity
JL	J series tapper roller bearings		
JLM	J series light medium duty inch series		
L	Light duty inch series		
LM	Light medium duty inch series		
М	Medium duty inch series		


Spherical Roller bearings

Bearing type	Bearing Series	Diameter series
Spherical roller bearings	239,230,240,231,241,222,232,213,223,	9,0,0,1,1,2,2,3,3

Prefix	Description	Suffix	Description
		CC	Steel cage
		CA	Machined single brass cage
		К	Tapered bore 1:12
		K30	Tapered bore 1:30
		М	Machined brass cage
		MA	Machined brass cage outer ring guided
		MB	Machined brass cage inner ring guided
		W33	Lubricating holes and groove on outer ring

Thrust ball bearings

Bearing type	Bearing Series	Diameter series
Thrust ball bearing	511,512,513	1,2,3

Prefix	Description	Suffix	Description
		М	Machined brass cage

Bearings Tolerances

Tolerances for bearings

Bearing tolerances and permissible values for the boundary dimensions and running accuracy of bearings are specified. These values are prescribed in JIS B 1514 "tolerances for rolling bearings." (These JIS standards are based on ISO standards.)

Bearing tolerances are standardized by classifying bearings into the following six classes (accuracy in tolerances becomes higher in the order described): 0, 6X, 6, 5, 4 and 2.

Dimensional accuracy

Dimensional accuracy constitutes the acceptable values for bore diameter, outer diameter, assembled bearing width, and bore diameter uniformity as seen in chamfer dimensions, allowable inner ring tapered bore deviation and shape error. Also included are, average bore diameter variation, outer diameter variation, average outer diameter unevenness, as well as raceway width and height variation (for thrust bearings).

Running accuracy

Running accuracy constitutes the acceptable values for inner and outer ring radial runout and axial runout, inner ring side runout, and outer ring outer diameter runout. Allowable rolling bearing tolerances have been established according to precision classes. Bearing precision is stipulated as JIS class 6, class 5, class 4, or class 2, with precision rising from ordinary precision indicated by class 0.

Bearing types and applicable tolerance

	Bearing type	Applicable standard		Toler	ance clas	s		Tolerance table
Deep groove	e ball bearings		class 0	class 6	class 5	class 4	class 2	
Angular cont	tact ball bearings		class 0	class 6	class 5	class 4	class 2	
Self-aligning	ball bearings	JIS B 1514	class 0	-	-	_	_	Table a
Cylindrical ro	oller bearigns	(ISO492)	class 0	class 6	class 5	class 4	class 2	
Spherical rol	ller bearings		class 0	-	-	-	-	1
Tapered	metric	JIS B 1514	class 0,6X	class 6	class 5	class 4	_	Table b
roller bearings	Inch	ANSI/ABMA Std.19	class 4	class 2	class 3	class 0	class 00	Table c
Thrust ball b	earings	JIS B 1514	class 0	class 6	class 5	class 4	_	Table d
Spherical rol	ller thrust bearings	(ISO199)	class 0	_	_	_	_	Table e

Comparison of tolerance classifications of national standards

Standard	Applicable standerd		Toler	ance Clas	S		Bearing Types
Japanese industrial standard (JIS)	JIS B 1514	Class 0,6X	Class 6	Class 5	Class 4	Class 2	All type
	ISO 492	Normal class Class 6X	Class 6	Class 5	Class 4	Class 2	Radial bearings
International Organization for Standardization (ISO)	ISO 199	Normal Class	Class 6	Class 5	Class 4	_	Thrust ball bearings
	ISO 578	Class 4	—	Class 3	Class 0	Class 00	Tapered roller bearings (Inch series)
	ISO 1224	_	_	Class 5A	Class 4A	—	Precision instrument bearings
Deutsches Institut fur Normung(DIN)	DIN 620	P0	P6	P5	P4	P2	All type
American National Standards Institute (ANSI)	ANSI/ABMA Std.20	ABEC-1 RBEC-1	ABEC-3 RBEC-3	ABEC-5 RBEC-5	ABEC-7	ABEC-9	Radial bearings (Except tapered roller bearings)
American Bearing Manufacturer's Association	ANSI/ABMA Std.19.1	Class K	Class N	Class C	Class B	Class A	Tapered roller bearings (Metric series)
(ABMA)	ANSI/ABMA Std.19	Class 4	Class 2	Class 3	Class 0	Class 00	Tapered roller bearings (Inch series)

Table a Tolerance of radial bearings (Except tapered roller bearings) Table a.1 Inner rings

	Nomir bor diame d	e				ension bre dia		r withir									E	Bore c	liam	eter Vd		iatior	1				
	mm												d	iame	ter se	eries	9	dia	mete	er se	ries	0.1	dia	nete	r seri	es 2	.3.4
			cla	ss 0	cla	ss 6	clas	ss 5	clas	ss 4	cla	ss 2					class	class				class			class		
	over	incl.	high	low	high	low	high	low	high	low	high	low	0	6	5 max	4	2	0	6 	5 max	4	2	0	6	5 max	4	2
_	0.6	2.5	0	-8	0	-7	0	-5	0	-4	0	-2.5	10	9	5	4	2.5	8	7	4	3	2.5	6	5	4	3	2.5
	2.5	10	0	-8	0	-7	0	-5	0	-4	0	-2.5	10	9	5	4	2.5	8	7	4	3	2.5	6	5	4	3	2.5
	10	18	0	-8	0	-7	0	-5	0	-4	0	-2.5	10	9	5	4	2.5	8	7	4	3	2.5	6	5	4	3	2.5
	18	30	0	-10	0	-8	0	-6	0	-5	0	-2.5	13	10	6	5	2.5	10	8	5	4	2.5	8	6	5	4	2.5
	30	50	0	-12	0	-10	0	-8	0	-6	0	-2.5	15	13	8	6	2.5	12	10	6	5	2.5	9	8	6	5	2.5
	50	80	0	-15	0	-12	0	-9	0	-7	0	-4	19	15	9	7	4	19	15	7	5	4	11	9	7	5	4
	80	120	0	-20	0	-15	0	-10	0	-8	0	-5	25	19	10	8	5	25	19	8	6	5	15	11	8	6	5
	120	150	0	-25	0	-18	0	-13	0	-10	0	-7	31	23	13	10	7	31	23	10	8	7	19	14	10	8	7
	150	180	0	-25	0	-18	0	-13	0	-10	0	-7	31	23	13	10	7	31	23	10	8	7	19	14	10	8	7
	180	250	0	-30	0	-22	0	-15	0	-12	0	-8	38	28	15	12	8	38	28	12	9	8	23	17	12	9	8
	250	315	0	-35	0	-25	0	-18	—	—	—	—	44	31	18	—	—	44	31	14	—	—	26	19	14	—	—
	315	400	0	-40	0	-30	0	-23	—	—	—	—	50	38	23	—	—	50	38	18	—	—	30	23	18	—	—
	400	500	0	-45	0	-35	—	—	—	_	—	—	56	44	—	—	—	56	44	—	—	—	34	26	—	—	—
_	500	630	0	-50	0	-40	_	—	_		_	—	63	50	_	-	_	63	50	_	_	_	38	30		-	

Table a.2 Outer rings

	Nomir outsid diame	e		Dir	nensi	onal to diame		ithin p		outsid	de						0	utside		imet <i>VD</i> p en ty		ariati	ion				
	D																			-	·	~ .					
	mm												dia	ame	ter se	eries	s 9	dia	mete	er se	ries	0.1	dia	mete	r seri	ies 2	.3.4
			clas	s 0	cla	ss 6	clas	s 5	clas	ss 4	cla	ass 2	class o	lass 6	class 5	class 4	class 2	class o	lass 6	class 5	class 4	class 2	class 0	class 6	class 5	class 4	class 2
	over	incl.	high	low	high	low	high	low	high	low	high	low		Ŭ.	max		2	0	-	max	4	2		-	max		2
-	2.5	6	0	-8	0	-7	0	-5	0	-4	0	-2.5	10	9	5	4	2.5	8	7	4	3	2.5	6	5	4	3	2.5
	6	18	0	-8	0	-7	0	-5	0	-4	0	-2.5	10	9	5	4	2.5	8	7	4	3	2.5	6	5	4	3	2.5
	18	30	0	-9	0	-8	0	-6	0	-5	0	-4	12	10	6	5	4	9	8	5	4	4	7	6	5	4	4
	30	50	0	-11	0	-9	0	-7	0	-6	0	-4	14	11	7	6	4	11	9	5	5	4	8	7	5	5	4
	50 50	80	0	-13	0	-11	0	-9	0	-7	0	-4 -4	16	14	9	7	4	13	11	7	5	4	10	8	7	5	4
	80	120	0	-15	0	-13	0	-10	0	-8	0	-4 -5	19	16	10	8	5	19	16	8	6	5	11	10	8	6	5
			0		0		0		0	-	-	-			10	0	-			0	-	-	''	10	0	0	-
	120	150	0	-18	0	-15	0	-11	0	-9	0	-5	23	19	11	9	5	23	19	8	7	5	14	11	8	7	5
	150	180	0	-25	0	-18	0	-13	0	-10	0	-7	31	23	13	10	7	31	23	10	8	7	19	14	10	8	7
	180	250	0	-30	0	-20	0	-15	0	-11	0	-8	38	25	15	11	8	38	25	11	8	8	23	15	11	8	8
	250	315	0	-35	0	-25	0	-18	0	-13	0	-8	44	31	18	13	8	44	31	14	10	8	26	19	14	10	8
	315	400	0	-40	0	-28	0	-20	0	-15	0	-10	50	35	20	15	10	50	35	15	11	10	30	21	15	11	10
	400	500	0	-45	0	-33	0	-23	—	—	—	—	56	41	23	—	—	56	41	17	_	—	34	25	17	—	—
	500	630	0	-50	0	-38	0	-28	—	_	_	_	63	48	28	_	_	63	48	21		_	38	29	21	_	_
	630	800	0	-75	0	-45	0	-35	_	_	_		94		35		_	94	56	26		_	55		26	_	_

Bearings Tolerances

																										Uni	it µ m
Mean bore o variati			Inı radia	ner r al ru		:		e rui th b	nout ore		ner r al ru	ing nout			Ini	ner rin	-	idth de A _{Bs}	eviat	ion			Ini		ring riatio	widt on	:h
Vdm;	D			Kia				$S \mathrm{d}$			Sia				no	rmal				mod	lified				V_{Bs}		
class class class 0 6 5 max	4 2	class 0	6	class 5 max	4	class 2	5	class 4 max	class 2	5	class 4 max	class 2	clas high	s 0,6 Iow		ss 5,4 Iow		ass 2 Iow	clas high	ss 0,6 n low			class c 0	6	class 5 max	class 4	class 2
6 5 3	2 1.5	10		4	2.5	1.5	7	3	1.5	7	3	1.5	0	-40	0	-40	0	-40			0	-250	12	12	5	2.5	15
6 5 3	2 1.5	10	-	4		1.5	7	3	1.5	7	3	1.5	0	-120	Ő	-40	0	-40	0	-250	0	-250	15	15	5	2.5	
653	2 1.5	10	7	4	2.5	1.5	7	3	1.5	7	3	1.5	0	-120	0	-80	0	-80	0	-250	0	-250	20	20	5	2.5	1.5
863	2.5 1.5	13	8	4	3	2.5	8	4	1.5	8	4	2.5	0	-120	0	-120	0	-120	0	-250	0	-250	20	20	5	2.5	1.5
984	3 1.5	15		5	4	2.5	8	4	1.5	8	4	2.5	0	-120	0	-120	0	-120	0	-250		-250	20	20	5	3	1.5
11 9 5	3.5 2	20	10	5	4	2.5	8	5	1.5	8	5	2.5	0	-150	0	-150	0	-150	0	-380	0	-250	25	25	6	4	1.5
15 11 5	4 2.5	25		6	5	2.5	9	5	2.5	9	5	2.5	0	-200	0	-200	0	-200	0	-380		-380	25		7	4	2.5
19 14 7 19 14 7	5 3.5 5 3.5	30		8 8	6 6	2.5 5	10 10	6 6	2.5	10	7 7	2.5 5	0	-250	0 0	-250	0 0	-250	0	-500	0	-380	30	30	8	5	2.5 4
		30		-	•			6	4	10	•	0	0	-250	·	-250	•	-250	0	-500	0	-380	30	30	8	5	
23 17 8	64	40		10	8	5	11	7	5	13	8	5	0	-300	0	-300	0	-300	0	-500	0	-500	30			6	5
26 19 9 30 23 12		50 60		13 15	_	_	13 15	_	_	15 20	_	_	0	-350 -400	0 0	_	_	_	0	-500 -630	0	_	35 40	35 40		_	_
															U					000	U						
34 26 — 38 30 —		65 70		_	_	_		_	_		_	_	0	-450 -500	_	_	_	_		_	_	_	50 60	45 50	_	_	_
30 30 -		10	40										0	-500									00	50			

Unit µm

	Outside o variatio Sealed/ bear diameter	on V _{DP} /shield ings	Me		ore c ariati V _{Dmp}		ter	Oute	er rin	g rac Kea	lial ru	inout		ide su clinat Sd	irface ion		side r al run Sea	0	Outer ring width deviation ∆cs		ng w ation ⁷ Cs		
	2,3,4 class 0 ma	0,1,2,3,4 class 6 ax	class 0	class 6	class 5 max	class 4	class 2	class 0	class 6	class 5 max	class 4	class 2	class 5	class 4 max	class 2	class 5	class 4 max	class 2	all type		class 5 1AX	class 4	class 2
-	10	9	6	5	3	2	1.5	15	8	5	3	1.5	8	4	1.5	8	5	1.5			5	2.5	1.5
	10	9	6	5	3	2	1.5	15	8	5	3	1.5	8	4	1.5	8	5	1.5	Depends on	Depends	5		1.5
	12	10	7	6	3	2.5	2	15	9	6	4	2.5	8	4	1.5	8	5	2.5	tolerance of	on	-	2.5	
		-		Ŭ	0											-			Δ_{Bs} in relation				
	16	13	8	7	4	3	2	20	10	7	5	2.5	8	4	1.5	8	5	2.5	to d of same	of Δ_{Bs} in			1.5
	20	16	10	8	5	3.5	2	25	13	8	5	4	8	4	1.5	10	5	4	bearing	relation to	6	3	1.5
	26	20	11	10	5	4	2.5	35	18	10	6	5	9	5	2.5	11	6	5	bearing	d of same	8	4	2.5
	30	25	14	11	6	5	2.5	40	20	11	7	5	10	5	2.5	13	7	5		bearing	8	5	2.5
	38	30	19	14	7	5	3.5	45	23	13	8	5	10	5	2.5	14	8	5		2 con	8	5	2.5
	_	_	23	15	8	6	4	50	25	15	10	7	11	7	4	15	10	7			10	7	4
			~~	10	~	-		00	~~	10		-		•	-	10	10	-				-	-
	_	_	26	19	9	/	4	60	30		11	/	13	8	5	18	10	7			11	/	5
	_	_	30	21	10	8	5	70	35	20	13	8	13	10	7	20	13	8			13	8	1
	—	-	34	25	12		_	80	40	23			15			23		—			15		—
	_	_	38	29	14		—	100	50	25		—	18			25	—				18	—	—
	—	—	55	34	18	—	—	120	60	30	—	—	20	—	—	30	—	—			20	—	—

Table b Tolerance of tapered roller bearings (Metric series)

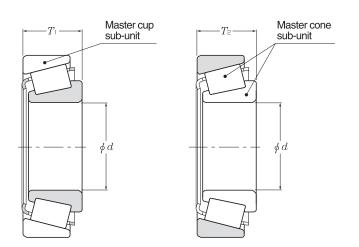
Table b.1 Inner rings

Nom bo diam d	re eter			nal tol amete ∆				E		amete ation 7 _{dp}	٢	Mea		e diam ation	eter	Inne	Ŭ	r <mark>adial ı</mark> Kia	runout	Sic rune with	out bore
m	m	class	0,6X	clas	s 5,6	cla	ss 4	class 0,6X	class 6	class 5	class 4	class 0,6X	class 6	class 5	class 4	class 0,6X	class 6	class 5	class 4	class 5	class 4
over	incl.	high	low	high	low	high	low		n	nax			n	nax			n	nax		m	nax
10	18	0	-12	0	-7	0	-5	12	7	5	4	9	5	5	4	15	7	5	3	7	3
18	30	0	-12	0	-8	0	-6	12	8	6	5	9	6	5	4	18	8	5	3	8	4
30	50	0	-12	0	-10	0	-8	12	10	8	6	9	8	5	5	20	10	6	4	8	4
50	80	0	-15	0	-12	0	-9	15	12	9	7	11	9	6	5	25	10	7	4	8	5
80	120	0	-20	0	-15	0	-10	20	15	11	8	15	11	8	5	30	13	8	5	9	5
120	180	0	-25	0	-18	0	-13	25	18	14	10	19	14	9	7	35	18	11	6	10	6
180	250	0	-30	0	-22	0	-15	30	22	17	11	23	16	11	8	50	20	13	8	11	7
250	315	0	-35	—	—	—	—	35	—	—	—	26	—	—	—	60	—	—	—		—
 315	400	0	-40	—	—	—	—	40	—	—	—	30	_	—	—	70	—	—	—		

Table b.2 Outer rings

out diar	minal tside meter D			nal tole diamet Δε	er witl			Οι		diame ation	ter	Mea	an bore varia VI		eter	Oute	r ring r K	adial I	unout	Out: surf inclin S	ace ation
rr	าทา	class	0,6X	clas	s 5,6	cla	ss 4	class 0.6X	class 6	class 5	class 4	class 0,6X	class 6	class 5	class 4	class 0.6X	class 6	class 5	class 4	class 5	class 4
over	incl.	high	low	high	low	high	low	0,07	-	nax	7	0,0/	-	nax	7	0,0/	-	nax	7	Ŭ	iax
18	30	0	-12	0	-8	0	-6	12	8	6	5	9	6	5	4	18	9	6	4	8	4
30	50	0	-14	0	-9	0	-7	14	9	7	5	11	7	5	5	20	10	7	5	8	4
50	80	0	-16	0	-11	0	-9	16	11	8	7	12	8	6	5	25	13	8	5	8	4
80	120	0	-18	0	-13	0	-10	18	13	10	8	14	10	7	5	35	18	10	6	9	5
120	150	0	-20	0	-15	0	-11	20	15	11	8	15	11	8	6	40	20	11	7	10	5
150	180	0	-25	0	-18	0	-13	25	18	14	10	19	14	9	7	45	23	13	8	10	5
180	250	0	-30	0	-20	0	-15	30	20	15	11	23	15	10	8	50	25	15	10	11	7
250	315	0	-35	0	-25	0	-18	35	25	19	14	26	19	13	9	60	30	18	11	13	8
315	400	0	-40	0	-28	0	-20	40	28	22	15	30	21	14	10	70	35	20	13	13	10

Table b.3 Effective width of outer and inner rings with roller


Table	əb.3 Ef	fective w	idth of	outer ar	id inn	er rin <u>gs</u>	with ro	ller	Unit µm
Nom bo diam d	ore leter	Effective of roller a of tapere	nd inner	ring asse earing	embly			bearing vidth dev 25	
		clas	s 0	class	6X	clas	s 0	class	6X
over	incl.	high	low	high	low	high	low	high	low
10	18	+100	0	+50	0	+100	0	+50	0
18	30	+100	0	+50	0	+100	0	+50	0
30	50	+100	0	+50	0	+100	0	+50	0
50	80	+100	0	+50	0	+100	0	+50	0
80	120	+100	-100	+50	0	+100	-100	+50	0
120	180	+150	-150	+50	0	+200	-100	+100	0
180	250	+150	-150	+50	0	+200	-100	+100	0
250	315	+150	-150	+100	0	+200	-100	+100	0
315	400	+200	-200	+100	0	+200	-200	+100	0

Bearings Tolerances

																Unit μ m
Inner ring axial runout		Inner i	Ŭ	dth de	viation	I	Asse	-	vidth devi ered rolle Δτ	er bea	0	e-row	Combinat deviation row be	of double	Combinati deviation bear	of 4-row
Sia										s			Δ_{B1s} ,	ΔC 1s	Δ_{B2s} ,	Δ_{C2s}
class 4	clas	s 0,6	class	s 6X	clas	s 4,5	class	s 0,6	class	6X	class	s 4,5	class	0,6,5	class	0,6,5
max	high	low	high	low	high	low	high	low	high	low	high	low	high	low	high	low
3	0	-120	0	-50	0	-200	+200	0	+100	0	+200	-200	_	—	—	_
4	0	-120	0	-50	0	-200	+200	0	+100	0	+200	-200	-	—	_	—
4	0	-120	0	-50	0	-240	+200	0	+100	0	+200	-200	+240	-240	-	
4	0	-150	0	-50	0	-300	+200	0	+100	0	+200	-200	+300	-300	_	—
5	0	-200	0	-50	0	-400	+200	-200	+100	0	+200	-200	+400	-400	+500	-500
7	0	-250	0	-50	0	-500	+350	-250	+150	0	+350	-250	+500	-500	+600	-600
8	0	-300	0	-50	0	-600	+350	-250	+150	0	+350	-250	+600	-600	+750	-750
	0	-350	0	-50		—	+350	-250	+200	0	—	—	+700	-700	+900	-900
	0	-400	0	-50	_	—	+400	-400	+200	0	_	-	+800	-800	+1 000	-1 000

			Unit μ m
Outer ring axial runout _{Sea}	Outer ring wi	viation	
class 4	class 0,6,5,4	clas	s 6X
max	sup. inf.	sup.	inf.
5 5 5 7 8	Depends on tolerance of Δ_{Bs} in relation to d of same bearing	0 0 0 0 0	-100 -100 -100 -100 -100 -100
10 10 13		0 0 0	-100 -100 -100

Table c Tolerance of tapered roller bearings (Inch series) Table c.1 Inner rings

Table c.1 Inner	rings										Unit µm
Nominal bo	re diameter				Single bo	re diameter	deviation				
C	l					Δd s					
mm ((inch)	Clas	s 4	Class	s 2	Clas	s 3	Class	s 0	Class	00
over	incl.	high	low	high	low	high	low	high	low	high	low
_	76.2(3)	+13	0	+13	0	+13	0	+13	0	+8	0
76.2(3)	266.7 (10.5)	+25	0	+25	0	+13	0	+13	0	+8	0
266.7 (10.5)	304.8 (12)	+25	0	+25	0	+13	0	+13	0	—	—
304.8(12)	609.6 (24)	+51	0	+51	0	+25	0	_	—	—	—
609.6 (24)	914.4 (36)	+76	0	—		+38	0	—	—	—	—
914.4 (36)	1 219.2 (48)	+102	0		—	+51	0	—	—	—	
1 219.2 (48)	-	+127	0		_	+76	0	—	_	_	_

Table c.2 Outer rings

Table	e c.2 Outer	rings										Unit µm
1	Nominal out	side diameter				Single outs	ide diamete	eter deviation				
	i	D										
	mm	(inch)	Clas	s 4	Clas	s 2	Clas	is 3	Class	s 0	Class	s 00
	over	incl.	high	low	high	low	high	low	high	low	high	low
	_ 66.7 (10.5) 04.8 (12)	266.7 (10.5) 304.8 (12) 609.6 (24)	+25 +25 +51	0 0 0	+25 +25 +51	0 0 0	+13 +13 +25	0 0 0	+13 +13	0	+8	0
91	09.6 (24) 14.4 (36) 19.2 (48)	914.4 (36) 1 219.2 (48) —	+76 +102 +127	0 0 0	+76	0	+38 +51 +76	0 0 0	 _			

Table d Tolerance of thrust ball bearings Table d.1 Shaft raceway washer

Unit μ m Nominal Mean bore diameter deviation Bore diameter Raceway thickness variation bore diameter variation $\Delta \mathit{d}\mathsf{mp}$ $S\mathbf{i}$ $V d \mathbf{p}$ dClass Class Class Class Class Class Class Class mm 0,6,5 0,6,5 over incl. high low high low max max -8 -7 -10 -8 -12 -10 -15 -12 -20 -15 -25 -18 -30 -22 -35 -25 -40 -30 -45 -35 -40 -50

Bearings Tolerances

Table d.2 Housing raceway washer

Table d	able d.2 Housing raceway washer										
	Nominal outside diameter D	Mean outside diameter deviation $\Delta D mp$				vari	diameter ation 7 _{Dp}		-	kness variation	
	mm	Cla	ass	CI	ass	Class	Class	Class	Class	Class	Class
		0,	6,5		4	0,6,5	4	0	6	5	4
ove	r incl.	high	low	high	low	m	max		max		
10 18 30 50 80 120 180 250 315 400	50 80 120 180 250 315 400		-11 -13 -16 -19 -22 -25 -30 -35 -40 -45	0 0 0 0 0 0 0 0 0 0 0 0	-7 -8 -9 -11 -13 -15 -20 -25 -28 -28 -33	8 10 12 14 17 19 23 26 30 34	5 6 7 8 10 11 15 19 21 25		According to th of S1 against "d pearings		
500 630		0	-50 -75	0 0	-38 -45	38 55	29 34				
030	800	0	-75	0	-40	- 55	34				

Table d.3	Bearing heig	ght	Unit μ m
b	minal ore meter	Bearin	direction g height iation
r	d nm		Δau s
over	incl.	high	low
_	30	0	-75
30	50	0	-100
50	80	0	-125
80	120	0	-150
120	180	0	-175
180	250	0	-200
250	315	0	-225
315	400	0	-300
400	500	0	-350
500	630	0	-400

Table e Tolerance of spherical thrust roller bearing Table e.1 Shaft raceway washer

Table e.1 Shaft raceway washer Unit µ m										
Nominal bore diameter d mm			bore deviation	Bore diameter variation Vdp	Side runout with bore <i>S</i> d	devi) height ation			
over	incl.	high	low	max	max	high	low			
50 80 120	80 120 180	0 0 0	-15 -20 -25	11 15 19	25 25 30	+150 +200 +250	-150 -200 -250			
180 250 315	250 315 400	0 0 0	-30 -35 -40	23 26 30	30 35 40	+300 +350 +400	-300 -350 -400			
400	500	0	-45	34	45	+450	-450			

Table e.2 Housing raceway washer

			Unit µm
outside	minal diameter D mm	outside	olane mean e diameter viation ∆⊅mp
over	incl.	high	low
120	180	0	-25
180	250	0	-30
250	315	0	-35
315	400	0	-40
400	500	0	-45
500	630	0	-50
630	800	0	-75
800	1,000	0	-100

Interference

For rolling bearings, inner and outer rings are fixed on the shaft or in the housing so that relative movement does not occur between fitting surfaces during operation or under load. This relative movement between the fitting surfaces of the bearing and the shaft or housing can occur in a radial direction, an axial direction, or in the direction of rotation. Types of fitting include tight, transition and loose fitting, which may be selected depending on whether or not there is interference.

The most effective way to fix the fitting surfaces between a bearing's raceway and shaft or housing is to apply a "tight fit." The advantage of this tight fit for thin walled bearings is that it provides uniform load support over the entire ring circumference without any loss of load carrying capacity. However, with a tight fit, ease of installation and disassembly is lost; and when using a non-separable bearing as the floating-side bearing, axial displacement is not possible. For this reason, a tight fit cannot be recommended in all cases.

The necessity of a proper fit

In some cases, improper fit may lead to damage and shorten bearing life, therefore it is necessary to make a careful investigation in selecting a proper fit. Some of the bearing failure caused by improper fit are listed below.

- Raceway cracking, early flaking and displacement of raceway
- Raceway and shaft or housing abrasion caused by creeping and fretting corrosion
- Seizing caused by negative internal clearances
- Increased noise and deteriorated rotational accuracy due to raceway groove deformation

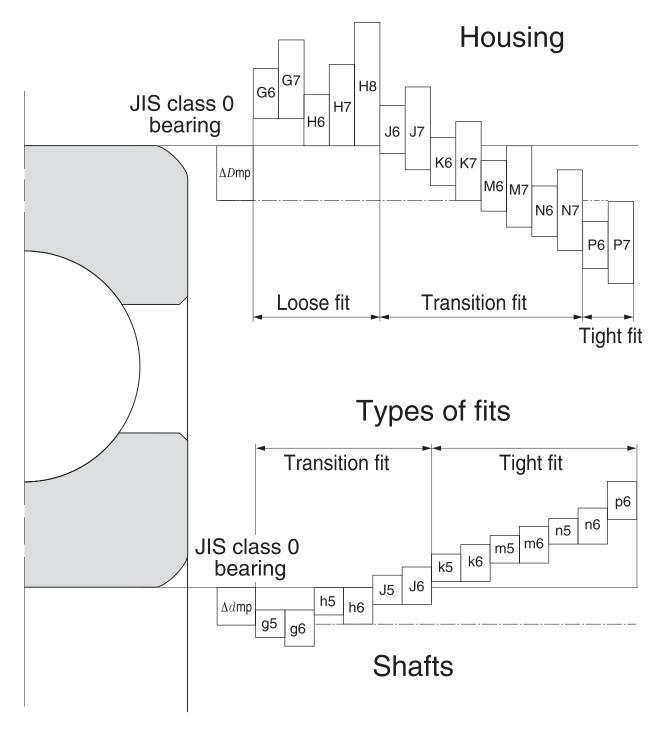
Fit selection

Selection of a proper fit is dependent upon thorough analysis of bearing operating conditions, including consideration of:

- Shaft and housing material, wall thickness, finished surface accuracy, etc.
- Machinery operating conditions (nature and magnitude of load, rotational speed, temperature, etc.)

"Tight fit" or "Loose fit"

- (1) For raceways under rotating loads, a tight fit is necessary. "Raceways under rotating loads" refers to raceways receiving loads rotating relative to their radial direction. For raceways under static loads, on the other hand, a loose fit is sufficient.
- (2) For non-separable bearings, such as deep groove ball bearings, it is generally recommended that either the inner ring or outer ring be given a loose fit.


Illustration	Bearing rotation	on	Ring load	Fit
Static load		Inner ring: Rotating Outer ring: Stationary	Rotating inner ring load	Inner ring : Tight fit
Unbalanced load		Inner ring: Stationary Outer ring: Rotating	Static outer ring load	Outer ring : Loose fit
Static load		Inner ring: Stationary Outer ring: Rotating	Static inner ring load	Inner ring : Loose fit
Unbalanced load		Inner ring: Rotating Outer ring: Stationary	Rotating outer ring load	Outer ring : Tight fit

Radial load and bearing fit

Recommended Fits

Bearing fit is governed by the selection tolerances for bearing shaft diameters and housing bore diameters. Widely used fits for 0 Class tolerance bearings and various shaft and housing bore diameter tolerances are shown below.

Interference minimum and maximum values

The following points should be considered when it is necessary to calculate the interference for an application:

- · In calculating the minimum required amount of interference keep in mind that:
- 1) interference is reduced by radial loads
- 2) interference is reduced by differences between bearing temperature and ambient temperature
- 3) interference is reduced by variation of fitting surfaces
- The upper limit value should not exceed 1/1000 of the shaft diameter.

General standards for radial bearing fits (JIS Class 0, 6X, 6)

Tolerance class of shafts commonly used for radial bearings (classes 0, 6X and 6)

		Ball be	earings		oller bearing ller bearing	Spherical ro	oller bearing	Shaft	Remarks		
C	onditions			Shaft dian	neter (mm)		tolerance class	Remarks			
		Over	Under	Over Under		Over	Over Under				
	Cylindrical bore bearing (Classes 0, 6X and 6)										
Inner rin of ur	Light load or fluctuating load	18 100 —	18 100 200 —	40 140	40 140 200			h5 js6 k6 m6	When greater accuracy is required js5, k5, and m5 may be substituted for js6, k6, and m6.		
Inner ring rotational load or load of undetermined direction	Ordinary Ioad	18 100 140 200	18 100 140 200 280 	40 100 140 200	40 100 140 200 400	40 65 100 140 280	40 65 100 140 280 500	js5 k5 m5 m6 n6 p6 r6	Alteration of inner clearances to accommodate fit is not a consideration with single-row angular contact bearings and tapered roller bearings. Therefore, k5 and m5 may be substituted for k6 and m6.		
ion	Heavy load or impact load			50 140 200	140 200	50 100 140	100 140 200	n6 p6 r6	Use bearings with larger internal clearances than CN clearance bearings.		
Inner ring static loac	Inner ring must move easily over shaft			Overall sha	aft diameter			g6	When greater accuracy is required use g5. For large bearings, f6 will suffice for to facilitate movement.		
Inner ring static load	Inner does not have to move easily over shaft			Overall sha	aft diameter			h6	When greater accuracy is required use h5.		
Cen	Center axial load Overall shaft diameter							js6	Generally, shaft and inner rings are not fixed using interferance.		
			Tapered	bore bearing	g (class 0) (v	vith adapter	or withdrawa	al sleeve)			
0	Overall load Overall shaft diameter h9/							h9/IT5	h10/IT7 will suffice for power transmitting shafts.		

Tolerance class of housing bore commonly used for radial bearings (classes 0, 6X and 6)

		Toleration class			
Housing	Туре	s of load	Outer ring axial direction movement	of housing bore	Remarks
		All types of loads	Able to move.	H7	G7 will suffice for large bearings or bearings with large temperature differential between the outer ring and housing.
Single housing or divided housing		Light load or ordinary load	Able to move.	H8	
	Outer ring static load	Shaft and inner ring become hot.	Able to move easily.	G7	F7 will suffice for large bearings or bearings with large temperature differential between the outer ring and housing.
		Requires precision rotation with light	As a rule, cannot move.	K6	Primarily applies to roller bearings.
		or ordinary loads.	Able to move.	JS6	Primarily applies to ball bearings.
		Requires quiet operation.	Able to move.	H6	
		Light or ordinary load	Able to move.	JS7	If precision is required, JS6 and K6 are used in place of
Single housing	Indeterminate load	Ordinary load or heavy load	As a rule, cannot move.	K7	JS7 and K7.
		Large impact load	Cannot move.	M7	
		Light or fluctuating load	Cannot move.	M7	
	Outer ring	Ordinary or heavy load	Cannot move.	N7	Primarily applies to ball bearings.
	rotational load	Heavy load or large impact load with thin housing	Cannot move.	P7	Primarily applies to roller bearings.

Bearings Fits

Standard fits for thrust bearings (JIS Class 0 and 6)

Shaft fits

Bearing type		Load conditions	Fit	Shaft diameter mm over incl.	Tolerance class
All thrust bearings		Centered axial load only	Transition fit	All sizes	js6 or h6
	Con	Inner ring static load	Transition fit	All sizes	js6
Spherical roller thrust bearings	Combined load	Inner ring rotating load or Indeterminate load	Transition fit Tight fit	$\begin{array}{rrr} - & \sim & 200 \\ 200 & \sim & 400 \\ 400 & \sim & \end{array}$	k6 or js6 m6 or k6 n6 or m6

Housing fits

Bearing type		Load conditions	Fit	Tolerance class	Remarks
All thrust	All thrust Centered axial load only			Select a tolerance	class that will provide clearance between outer ring and housing.
bearings	Cei	itered axial load only	Loose fit	H8	Greater accuracy required with thrust ball bearings
Spherical	Com	Outer ring static load		H7	
roller thrust	Combined	Indeterminate	Transition fit	K7	Normal operating conditions
bearings	bearings		Transition III	M7	For relatively large radial loads

Note: All values and fits listed in the above tables are for cast iron or steel housings.

Fits for electric motor bearings

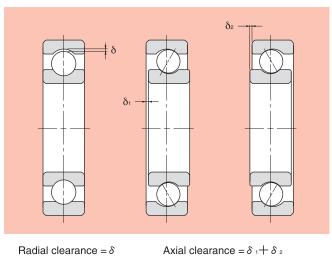
_	Shaf	it fits	Housing fits			
Bearing type	Shaft diameter mm over incl.	Tolerance class	Housing bore diameter	Tolerance class		
Deep groove ball bearings	~ 18 18 ~100 100 ~160	j5 k5 m5	All sizes	H6 or J6		
Cylindrical roller bearings	~ 40 40 ~160 160 ~200	k5 m5 n6	All sizes	H6 or J6		

Fitting against shaft - class 0

Nomina			n bore neter	g5	g6	h5	h6	j5	js5	j6
bea			ation	bearing shaft	bearing shaft	bearing shaft	bearing shaft	bearing shaft	bearing shaft	bearing shaft
a m	m	Δd					=	_	_	
over	incl.	high	low							
3	6	0	-8	4T~ 9L	4T~12L	8T~ 5L	8T~ 8L	11T~ 2L	10.5T~ 2.5L	14T~ 2L
6	10	0	-8	3T~11L	3T~14L	8T~ 6L	$8 T \sim 9 L$	12T~ 2L	$11T \sim 3L$	15T~ 2L
10	18	0	-8	2T~14L	$2T\sim 17L$	$8T\sim~8L$	8T~11L	$13T\sim 3L$	12T \sim 4L	$16T\sim 3L$
18	30	0	-10	3T~16L	3T~20L	10T~ 9L	10T~13L	15T~ 4L	14.5T~ 4.5L	$19T\sim~4L$
30	50	0	-12	3T~20L	3T~25L	12T~11L	12T~16L	18T~ 5L	17.5T~ 5.5L	23T~ 5L
50	80	0	-15	5T~23L	5T~29L	15T~13L	15T~19L	21T~ 7L	21.5T~ 6.5L	27T~ 7L
80	120	0	-20	8T~27L	8T~34L	20T~15L	20T~22L	26T \sim 9L	$27.5T\sim~7.5L$	$33T\sim~9L$
120 140 160	140 160 180	0	-25	11T~32L	11T~39L	25T~18L	25T~25L	32T~11L	34T \sim 9L	39T~11L
180 200 225	200 225 250	0	-30	15T~35L	15T~44L	30T~20L	30T~29L	37T~13L	40T ~10L	46T~13L
250 280	280 315	0	-35	18T~40L	18T~49L	35T~23L	35T~32L	42T~16L	46.5T~11.5L	51T~16L
315 355	355 400	0	-40	22T~43L	22T~54L	40T~25L	40T~36L	47T~18L	52.5T~12.5L	58T~18L
400 450	450 500	0	-45	25T~47L	25T~60L	45T~27L	45T~40L	52T~20L	58.5T~13.5L	65T~20L

Fitting against housing - class 0

	<u> </u>									
	ninal side	Mean o	outside neter	G7	H6	H7	J6	J7	Js7	K6
diam	eter of aring		ation	housing bearing						
	D Δ _{Dmp} mm		Omp							
over	incl.	high	low							
6	10	0	-8	5L~ 28L	0~17L	$0\sim$ 23L	4T~13L	7T~16L	7.5T~15.5L	7T~10L
10	18	0	-8	6L~ 32L	0~19L	$0\sim$ 26L	5T~14L	8T~18L	9T ~17L	9T~10L
18	30	0	-9	7L~ 37L	0~22L	$0\sim$ 30L	5T~17L	9T~21L	10.5T~19.5L	11T~11L
30	50	0	-11	9L~ 45L	0~27L	$0\sim$ 36L	6T~21L	11T~25L	12.5T~23.5L	13T~14L
50	80	0	-13	10L~ 53L	0~32L	$0\sim$ 43L	6T~26L	12T~31L	15T ~28L	15T~17L
80	120	0	-15	12L~ 62L	0~37L	$0\sim$ 50L	6T~31L	13T~37L	17.5T~32.5L	18T~19L
120	150	0	-18	14L~ 72L	0~43L	$0\sim$ 58L	7T~36L	14T~44L	20T ~38L	21T~22L
150	180	0	-25	14L~ 79L	0~50L	$0\sim~65L$	7T~43L	14T~51L	20T ~45L	21T~29L
180	250	0	-30	15L~ 91L	0~59L	$0\sim~76L$	7T~52L	16T~60L	23T ~53L	24T~35L
250	315	0	-35	17L~104L	0~67L	0~ 87L	7T~60L	16T~71L	26T ~61L	27T~40L
315	400	0	-40	18L~115L	0~76L	0~ 97L	7T~69L	18T~79L	28.5T~68.5L	29T~47L
400	500	0	-45	20L~128L	0~85L	0~108L	7T~78L	20T~88L	31.5T~76.5L	32T~53L


									Unit µm
js6	k5	k6	m5	m6	n6	p6	r6	Nomin	al bore eter of
bearing shaft	bea								
-		_						ہ m over	
12T \sim 4L	14T~1T	17T~1T	17T~ 4T	20T~ 4T	$24T\sim 8T$	$28T\sim 12T$		3	6
12.5T~ 4.5L	15T~1T	18T~1T	20T \sim 6T	$23T\sim~6T$	27T~10T	$32T\sim15T$		6	10
13.5T~ 5.5L	17T~1T	20T~1T	$23T\sim 7T$	$26T\sim 7T$	31T~12T	37T~18T		10	18
16.5T~ 6.5L	21T~2T	25T~2T	27T~ 8T	31T~ 8T	38T~15T	45T~22T		18	30
20T \sim 8L	25T~2T	30T~2T	32T~ 9T	$37T\sim 9T$	45T~17T	54T~26T		30	50
24.5T~ 9.5L	30T~2T	36T~2T	39T~11T	45T~11T	54T~20T	66T~32T		50	80
31T ~11L	38T~3T	45T~2T	48T~13T	55T~13T	65T~23T	79T~37T		80	120
37.5T~12.5L	46T~3T	53T~3T	58T~15T	65T~15T	77T~27T	93T~43T	113T~ 63T 115T~ 65T 118T~ 68T	120 140 160	140 160 180
44.5T~14.5L	54T~4T	63T~4T	67T~17T	76T~17T	90T~31T	109T~50T	136T~ 77T 139T~ 80T 143T~ 84T	180 200 225	200 225 250
51T ~16L	62T~4T	71T~4T	78T~20T	87T~20T	101T~34T	123T~56T	161T~ 94T 165T~ 98T	250 280	280 315
58T ~18L	69T~4T	80T~4T	86T~21T	97T~21T	113T~37T	138T~62T	184T~108T 190T~114T	315 355	355 400
65T ~20L	77T~5T	90T~4T	95T~23T	108T~23T	125T~40T	153T~68T	211T~126T 217T~132T	400 450	450 500

Unit µ m										
K7	M7	N7	P7	Nom outs						
housing bearing	housing bearing	housing bearing	housing bearing	diame bear	ter of					
<u> </u>			h	D)					
				mr	n					
				over	incl.					
10T~13L	15T~ 8L	19T~ 4L	24T~ 1T	6	10					
12T~14L	18T~ 8L	$23T\sim 3L$	$29T\sim 3T$	10	18					
15T~15L	$21T\sim 9L$	$28T\sim~2L$	$35T\sim 5T$	18	30					
18T~18L	25T~11L	33T~ 3L	42T~ 6T	30	50					
21T~22L	30T~13L	$39 \mathrm{T} \sim 4 \mathrm{L}$	51T~ 8T	50	80					
25T~25L	35T~15L	45T~ 5L	59T \sim 9T	80	120					
28T~30L	40T~18L	52T~ 6L	68T~10T	120	150					
28T~37L	40T~25L	52T~13L	68T~ 3T	150	180					
33T~43L	46T~30L	60T~16L	79T \sim 3T	180	250					
36T~51L	52T~35L	66T~21L	88T~ 1T	250	315					
40T~57L	57T~40L	73T~24L	98T~ 1T	315	400					
45T~63L	63T~45L	80T~28L	108T~ 0	400	500					

Bearing internal clearance is the amount of internal free movement before mounting.

As shown below, when either the inner ring or the outer ring is fixed and the other ring is free to move, displacement can take place in either an axial or radial direction. This amount of displacement (radially or axially) is termed the internal clearance and, depending on the direction, is called the radial internal clearance or the axial internal clearance.

Internal clearance

When the internal clearance of a bearing is measured, a slight measurement load is applied to the raceway so the internal clearance may be measured accurately. However, at this time, a slight amount of elastic deformation of the bearing occurs under the measurement load, and the clearance measurement value (measured clearance) is slightly larger than the true clearance. This difference between the true bearing clearance and the increased amount due to the elastic deformation must be compensated for. These compensation values are given in Table below.

measur	measured load (deep groove ball bearing) Unit μ m												
	ore Diameter mm		ng Load	Interna	adjusti	ment							
over	incl.	N {	<gt}< th=""><th>C2</th><th>CN</th><th>C3</th><th>C4</th><th>C5</th></gt}<>	C2	CN	C3	C4	C5					
10	18	24.5	{2.5}	3~4	4	4	4	4					
18	50	49 {5}		4~5	5	6	6	6					
50	200	147	{ 15 }	6~8	8	9	9	9					

Adjustment of radial internal clearance based on

Internal clearance selection

The internal clearance of a bearing under operating conditions (effective clearance) is usually smaller than the same bearing's initial clearance before being installed and operated. This is due to several factors including bearing fit, the difference in temperature between the inner and outer rings, etc. As a bearing's operating clearance has an effect on bearing life, heat generation, vibration, noise, etc.; care must be taken in selecting the most suitable operating clearance.

Criteria for selecting bearing internal clearance

A bearing's life is theoretically maximum when operating clearance is slightly negative at steady operation. In reality it is however difficult to constantly maintain this optimal condition. If the negative clearance becomes enlarged by fluctuating operating conditions, heat will be produced and life will decrease dramatically. Under ordinary circumstances you should therefore select an initial internal clearance where the operating clearance is slightly larger than zero.

For ordinary operating conditions, use fitting for ordinary loads. If rotational speed and operating temperature are ordinary, selecting normal clearance enables you to obtain the proper operating clearance. Table below gives examples applying internal clearances other than CN (normal) clearance.

Examples of applications where bearing clearances other than CN (normal) clearance are used

Operating conditions	Applications	Selected clearance							
With heavy or shock	Railway vehicle axles	C3							
load, clearance is large.	Vibration screens	C3, C4							
With indeterminate load, both inner and outer	Railway vehicle traction motors	C4							
rings are tight-fitted.	Tractors and final speed regulators	C4							
Shaft or inner ring is heated.	Paper making machines and driers	C3, C4							
nealeu.	Rolling mill table rollers	C3							
Reduction of noise and vibration when rotating.	Micromotors	C2, CM							
Adjustment of clearance to minimize shaft runout.	Main spindles of lathes (Double-row cylindrical roller bearings)	C9NA, C0NA							
Loose fitting for both inner and outer rings.	Compressor roll neck	C2							

Radial internal clearance of deep groove ball bearings

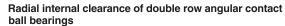
Nominal bo		C	22	C	CN		C3		C4	C5	
over	incl.	min	max	min	max	min	max	min	max	min	max
2.5 6	2.5 6 10	0 0 0	6 7 7	4 2 2	11 13 13	10 8 8	20 23 23	 14	 29	 20	37
10	18	0	9	3	18	11	25	18	33	25	45
18	24	0	10	5	20	13	28	20	36	28	48
24	30	1	11	5	20	13	28	23	41	30	53
30	40	1	11	6	20	15	33	28	46	40	64
40	50	1	11	6	23	18	36	30	51	45	73
50	65	1	15	8	28	23	43	38	61	55	90
65	80	1	15	10	30	25	51	46	71	65	105
80	100	1	18	12	36	30	58	53	84	75	120
100	120	2	20	15	41	36	66	61	97	90	140
120	140	2	23	18	48	41	81	71	114	105	160
140	160	2	23	18	53	46	91	81	130	120	180
160	180	2	25	20	61	53	102	91	147	135	200
180	200	2	30	25	71	63	117	107	163	150	230
200	225	2	35	25	85	75	140	125	195	175	265
225	250	2	40	30	95	85	160	145	225	205	300
250	280	2	45	35	105	90	170	155	245	225	340
280	315	2	55	40	115	100	190	175	270	245	370
315	355	3	60	45	125	110	210	195	300	275	410
355	400	3	70	55	145	130	240	225	340	315	460
400	450	3	80	60	170	150	270	250	380	350	510
450	500	3	90	70	190	170	300	280	420	390	570
500	560	10	100	80	210	190	330	310	470	440	630
560	630	10	110	90	230	210	360	340	520	490	690

Unit μ m

Radial internal clearance of self-aligning ball bearings

Nominal bo	ore diameter		Bearing with cylindrical bore								
d	mm	C2		CN		C3		C4		C5	
over	incl.	min	max	min	max	min	max	min	max	min	max
2.5	6	1	8	5	15	10	20	15	25	21	33
6	10	2	9	6	17	12	25	19	33	27	42
10	14	2	10	6	19	13	26	21	35	30	48
14	18	3	12	8	21	15	28	23	37	32	50
18	24	4	14	10	23	17	30	25	39	34	52
24	30	5	16	11	24	19	35	29	46	40	58
30	40	6	18	13	29	23	40	34	53	46	66
40	50	6	19	14	31	25	44	37	57	50	71
50	65	7	21	16	36	30	50	45	69	62	88
65	80	8	24	18	40	35	60	54	83	76	108
80	100	9	27	22	48	42	70	64	96	89	124
100	120	10	31	25	56	50	83	75	114	105	145
120	140	10	38	30	68	60	100	90	135	125	175
140	160	15	44	35	80	70	120	110	161	150	210

Radial internal clearance of self-aligning ball bearings - Bearing with tapered bore


Unit μ m

Unit μ m

Nominal bo	ore diameter		Bearing with tapered bore								
d r	nm	C2		CN		C3		C4		C5	
over	incl.	min	max	min	max	min	max	min	max	min	max
2.5	6		—	_	—		—	_	—	_	—
6	10						—				—
10	14	—							_	_	—
14	18	_	—	_	—	_		_	_	_	—
18	24	7	17	13	26	20	33	28	42	37	55
24	30	9	20	15	28	23	39	33	50	44	62
30	40	12	24	19	35	29	46	40	59	52	72
40	50	14	27	22	39	33	52	45	65	58	79
50	65	18	32	27	47	41	61	56	80	73	99
65	80	23	39	35	57	50	75	69	98	91	123
80	100	29	47	42	68	62	90	84	116	109	144
100	120	35	56	50	81	75	108	100	139	130	170
120	140	40	68	60	98	90	130	120	165	155	205
140	160	45	74	65	110	100	150	140	191	180	240

Radial internal clearance for duplex angular contact ball bearings

	ball bearings Unit µm												
Nomin dian	al bore neter	C1		C	2	С	N	С	3	C4			
d r over		min	max										
_	10	3	8	6	12	8	15	15	22	22	30		
10	18	3	8	6	12	8	15	15	24	30	40		
18	30	3	10	6	12	10	20	20	32	40	55		
30	50	3	10	8	14	14	25	25	40	55	75		
50	80	3	11	11	17	17	32	32	50	75	95		
80	100	3	13	13	22	22	40	40	60	95	120		
100	120	3	15	15	30	30	50	50	75	110	140		
120	150	3	16	16	33	35	55	55	80	130	170		
150	180	3	18	18	35	35	60	60	90	150	200		
180	200	3	20	20	40	40	65	65	100	180	240		

Unit µm Nominal bore C2 CN СЗ C4 C5 diameter $d \, \, {\sf mm}$ min max min max min max min max min max over incl. 10 only

Radial internal clearance of bearings for electric motor Unit μ m

Nominal diame		Radial internal clearance CM						
	mm	Deep groove	ball bearings	Cylindrical r	Cylindrical roller bearings			
over	incl.	min	max	min	max			
10 (incl.)	18	4	11	_				
18	24	5	12					
24	30	5	12	15	30			
30	40	9	17	15	30			
40	50	9	17	20	35			
50	65	12	22	25	40			
65	80	12	22	30	45			
80	100	18	30	35	55			
100	120	18	30	35	60			
120	140	24	38	40	65			
140	160	24	38	50	80			
160	180	-		60	90			
180	200		_	65	100			

Interchangeable radial internal clearance for cylindrical roller bearing (cylindrical bore)

Interchangeable radial internal clearance for cylindrical roller bearing (cylindrical bore)													
Nominal bo	Nominal bore diameter d mm		C2		CN		C3		C4	C5			
over	incl.	min	max	min	max	min	max	min	max	min	max		
10 24	10 24 30	0 0 0	25 25 25	20 20 20	45 45 45	35 35 35	60 60 60	50 50 50	75 75 75	65 70	90 95		
30	40	5	30	25	50	45	70	60	85	80	105		
40	50	5	35	30	60	50	80	70	100	95	125		
50	65	10	40	40	70	60	90	80	110	110	140		
65	80	10	45	40	75	65	100	90	125	130	165		
80	100	15	50	50	85	75	110	105	140	155	190		
100	120	15	55	50	90	85	125	125	165	180	220		
120	140	15	60	60	105	100	145	145	190	200	245		
140	160	20	70	70	120	115	165	165	215	225	275		
160	180	25	75	75	125	120	170	170	220	250	300		
180	200	35	90	90	145	140	195	195	250	275	330		
200	225	45	105	105	165	160	220	220	280	305	365		
225	250	45	110	110	175	170	235	235	300	330	395		
250	280	55	125	125	195	190	260	260	330	370	440		
280	315	55	130	130	205	200	275	275	350	410	485		
315	355	65	145	145	225	225	305	305	385	455	535		
355	400	100	190	190	280	280	370	370	460	510	600		
400	450	110	210	210	310	310	410	410	510	565	665		
450	500	110	220	220	330	330	440	440	550	625	735		

ΚΥΚ

Unit µm

Unit µm

Radial internal clearance of spherical roller bearings

Nominal bo	re diameter				B	earing with o	cylindrical bo	re			
d	mm	(02	С	CN		C3		4	C	25
over	incl.	min	max	min	max	min	max	min	max	min	max
14	18	10	20	20	35	35	45	45	60	60	75
18	24	10	20	20	35	35	45	45	60	60	75
24	30	15	25	25	40	40	55	55	75	75	95
30	40	15	30	30	45	45	60	60	80	80	100
40	50	20	35	35	55	55	75	75	100	100	125
50	65	20	40	40	65	65	90	90	120	120	150
65	80	30	50	50	80	80	110	110	145	145	180
80	100	35	60	60	100	100	135	135	180	180	225
100	120	40	75	75	120	120	160	160	210	210	260
120	140	50	95	95	145	145	190	190	240	240	300
140	160	60	110	110	170	170	220	220	280	280	350
160	180	65	120	120	180	180	240	240	310	310	390
180	200	70	130	130	200	200	260	260	340	340	430
200	225	80	140	140	220	220	290	290	380	380	470
225	250	90	150	150	240	240	320	320	420	420	520
250	280	100	170	170	260	260	350	350	460	460	570
280	315	110	190	190	280	280	370	370	500	500	630
315	355	120	200	200	310	310	410	410	550	550	690
355	400	130	220	220	340	340	450	450	600	600	750
400	450	140	240	240	370	370	500	500	660	660	820
450	500	140	260	260	410	410	550	550	720	720	900

Radial internal clearance of spherical roller bearings - Bearing with tapered bore

Nominal bore diameter Bearing with tapered bore $d \mod$ C2 CN C5 C3 C4 over incl min max min max min max min max min max ____ ____ _____ ____ ____ ____ ____ 1,000

Bearing Lubrication

Bearing Lubrication

Proper lubrication for rolling element bearings is critical for reliable bearing operation and prevention of premature damage and a reduction in fatigue life. The proper bearing lubricant must provide a separating film between the rolling elements, raceways, and cage to prevent metal-to-metal contact. The lubricant film must be thick enough under operating conditions to prevent contact of rolling element and raceway asperities.

If the asperities of rolling elements and races of an anti-friction bearing come into contact with each other, a certain amount of molecular adhesion or micro-welding or shearing of these asperities as a result of the relative motion between them can be expected. The result is an undesirable surface change of the rolling surfaces. Ideal lubrication requires that an oil film be continually present to prevent contact of the surface asperities and metal to metal contact.

In addition to preventing metal-to-metal contact, proper bearing lubricants help perform the following function:

- Reduce friction, heat generation, torque, and power consumption
- Provide a heat transfer medium
- Prevent corrosion
- · Aid in providing proper sealing and preventing contamination

Bearing lubrication is broadly categorized as being either grease or oil lubrication. The decision to use grease or oil and what type of lubricant system to use, are dependent on the bearing type and application operating conditions.

Bearing greasing methods and amounts

There are two methods of providing bearing grease lubrication. One is the closed lubrication, in which grease is filed in advance into a shielded or sealed bearing; the other is the feeding method in which the bearing and housing are greased at assembly with the proper amount and designed to allow re-greasing and replacement at specified intervals. The dosed method using a pre-lubricated shielded or sealed bearing is well suited for applications where cost and space limitations preclude the use of grease filled housing or where relubrication is not possible or necessary. Conversely, the use of the feeding method has the advantage of allowing the replacement on periodic intervals in those applications where operating conditions require grease replacement.

For bearing applications utilizing the feeding method, there should be a grease fitting and a vent at opposite ends of the housing near the top. Also, a drain plug should be located near the bottom of the housing to allow purging of the old grease during relubrication. A bearing should be initially greased at assembly by packing it in on both sides and making sure the grease is between the rolling elements and cage. Regreasing should always occur while the bearing is in motion at the normal operating temperature.

Grease amount

The amount of grease needed to effectively lubricate a bearing is normally very small. In general, grease fill should be one-third to one-half of the space around the bearing; however, this may vary according to the housing design and application requirements. In applications with high speed and low torque requirements, the bearings can be lubricated with very small quantities of greases. Similarly, in low speed applications where the bearing may be exposed to dirt or moisture, the space around the bearing can be filled from two-thirds to nearly full to prevent contamination. If an excessive amount of grease is used when not required, additional heat will be generated from the churning, resulting in a softening and deterioration of the grease, and a reduction in bearing life. The grease weight required for a bearing can be calculated in grams.

Grease quantity = 0.05 x D x B gms.

Regreasing intervals and grease life

With grease lubricated bearings, periodic relubrication is normally required to ensure efficient operation. Over a period of time, most grease will eventually start to harden due to oxidation. The exception to this is in presealed bearings where relubrication is usually not required.

When regreasing bearings, it is necessary to be sure that the grease fitting is clean prior to injecting the grease. A hand operated grease gun should be used for relubrication, but the use of high pressure needs to be avoided. High pressure may blow out seals. When using a grease gun, it should be calibrated for the

proper amount of grease, and confirmed that the grease in the gun is the same as what was initially applied to the bearings.

The main considerations for determining a relubrication cycle are operating speed, bearing size, operating temperature, and sealing efficiency. Seals are very critical with grease lubrication because of the importance to keep the grease free from contamination. Contamination that reaches the grease is trapped and will cause bearing damage and wear problems.

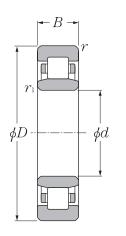
As the chart below shows leading grease available in the market with their specifications

Manufacturer	Product	BaseOil/thickener	Working temperature range °C	0.1mm Worked Penetration °C	Dropping Point °C	Remark
	Multemp SRL	Polyol ester+Diester/ Lithium hydroxy Stearate	-50~150	250	190	Low noise Long life, High temperature
Kunda Mushi	Multemp PS	Diester+Refined mineral oil Lithium Stearate	-60~130	NO.2	190	Low torque, Outstanding noise Suppressant property
Kyodo Yushi	Multemp SB-M	Synthetic hydrocarban/Diurea	-40~200	220	>260	High temperature,High speed operation, low noise property
	Raremax Super N	Polyol ester+Diester/ Lithium hydroxy Stearate	-40~180	260	120	Low noise Long life, High temperature
	Alvania RLQ 2	Mineral oil / Lithium	-25~120	266	195	Wide applications available
	Alvania RL2	Mineral oil/ Lithium	-30~120	310	185	Wide applications available
Shell	Alvania RL3	Mineral oil/ Lithium	-30~120	220	185	Not good for transmission
	Alvania EP 2	Mineral oil/ Lithium	-20~110	265	185	Long service life under heavy load water, resistance, Corrosian resistance
	Asonic GL Y 32	PAO, Ester oil/ Lithium	-50~140	265~295	>190	Low noise Long life, High temperature
	Asonic Q 74-73	PAO,Ester oil / Polyrea	-40~160	220~250	>250	Low noise, Long life, High temperature
	Klueberquiet BQH72-102	Ester oil / Polyurea	-40~180	250~280	>250	Low noise, Long life, High temperature
Kluber	Klueberquiet BEP72-82	Ester oil / Polyurea	-40~180	250~280	>250	High temperature, Available for auto generator bearings
	Petamo GHY 133 N	Mineral oil, PAO/ Polyrea	-30~160	265~295	>250	High temperature, Available for auto generator bearings
	Lsoflex LDS 18 Special A	Ester oil, Mineral oil / Li	-50~120	265~295	>190	Avaiable for pump bearings, Motor and its accessory
	Beacon 325	Diester / Lithium	-54~120	280	193	High Speed, Low noise Corrosian resistance
Exxon Mobil	Polyrex EM	Mineral / Diurea	-29~177	318	288	Low temperature
	Mobilgrease 28	Diester/ Microgel	-62~177	310	>260	Water resistance, High temperature
Chevron	SRI-2	ISOSYN/ Polyurea	-30~150	280	243	Water resistance, Corrosian resistance High temperature
Dupont	Krytox 240	Fluoinated / PTFE	-34~288	285		High temperature

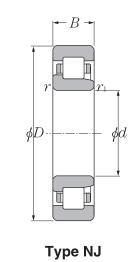
Vibration and Noise

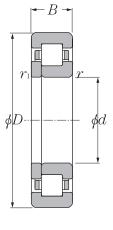
μm/s

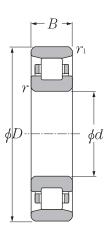
Vibration of single bearing


Bore dia (mm)	V 0			V 1			V 2			V 3			V 4		
	LB	MB	HB	LB	MB	HB									
Miniature Ball Bearings															
3-4	80	44	44	60	35	32	48	26	22	31	16	15	28	10	10
5-6	110	72	60	74	48	40	58	36	30	35	21	18	32	11	11
7-9	130	96	80	92	66	54	72	48	40	44	28	24	38	12	12
Deep Groove Ball Bearings															
10-12	160	120	100	120	80	70	90	60	50	55	35	30	45	14	15
15-17	210	150	120	150	100	85	110	78	60	65	46	35	52	18	18
20-25	260	190	150	180	125	100	130	100	75	80	60	45	60	25	25
30-35	300	240	190	200	150	130	150	120	100	90	75	60	70	35	40
40-45	360	300	260	240	180	160	180	150	130	110	90	80	82	50	50
50-55	420	320	320	280	200	200	210	160	160	125	100	100	95	70	70
60	480	360	440	320	220	240	240	180	200	145	110	130	100	80	80

Maximum acceleration of single bearing


Bore dia (mm) For dia series 0 For dia series 2 For dia series 3 Ζ Z1 Z2 Z3 Ζ Z1 Z3 Z4 Ζ Z1 Z2 Z3 Z4 Miniature Ball Bearings 3-4 5-6 7-8 Deep Groove Ball Bearings 115-120

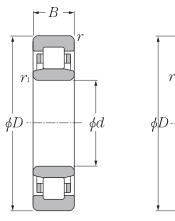

dB


Cylindrical Roller Bearings

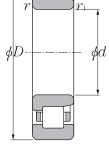
Type NU

ΚΥΚ

Type NUP

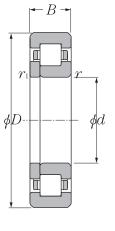

Type N

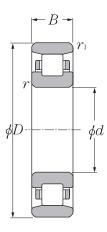
d 20~50mm


	Bound	ary di	mensio	ns	dvnam	Basic le	oad ratings dvnamic			y speeds	В	earing	numbers		Mass
		mm	ı		aynam	kN		kgf	m	in ⁻¹	type	type	type	type	kg
d	D	В	r _{s min}	r _{1s min}	C _r	Cor	C _r	Cor	grease	oil	NU	NJ	NUP	N	(approx.)
20	47 47 52 52	14 18 15 21	1.0 1.0 1.1 1.1	0.6 0.6 0.6 0.6	25.7 30.5 31.5 42.0	22.6 28.3 26.9 39.0	2 620 3 100 3 200 4 300	2 310 2 890 2 740 3 950	15 000 14 000 13 000 12 000	18 000 16 000 15 000 14 000	NU204 NU2204 NU304 NU2304	NJ NJ NJ NJ	NUP NUP NUP NUP	 	0.122 0.158 0.176 0.242
25	52 52 62 62	15 18 17 24	1.0 1.0 1.1 1.1	0.6 0.6 1.1 1.1	29.3 35.0 41.5 57.0	27.7 34.5 37.5 56.0	2 990 3 550 4 250 5 800	2 830 3 550 3 800 5 700	13 000 11 000 11 000 9 700	15 000 13 000 13 000 13 000 11 000	NU205 NU2205 NU305 NU2305	NJ NJ NJ NJ	NUP NUP NUP NUP	 	0.151 0.186 0.275 0.386
30	62 62 72 72	16 20 19 27	1.0 1.0 1.1 1.1	0.6 0.6 1.1 1.1	39.0 49.0 53.0 74.5	37.5 50.0 50.0 77.5	4 000 5 000 5 400 7 600	3 800 5 100 5 100 7 900	11 000 9 700 9 300 8 300	13 000 11 000 11 000 9 700	NU206 NU2206 NU306 NU2306	NJ NJ NJ NJ	NUP NUP NUP NUP	 	0.226 0.297 0.398 0.580
35	72 72 80 80	17 23 21 31	1.1 1.1 1.5 1.5	0.6 0.6 1.1 1.1	50.5 61.5 71.0 99.0	50.0 65.5 71.0 109.0	5 150 6 300 7 200 10 100	5 100 6 650 7 200 11 100	9 500 8 500 8 100 7 200	11 000 10 000 9 600 8 500	NU207 NU2207 NU307 NU2307	NJ NJ NJ NJ	NUP NUP NUP NUP	 	0.327 0.455 0.545 0.780
40	80 80 90 90	18 23 23 33	1.1 1.1 1.5 1.5	1.1 1.1 1.5 1.5	43.5 58.0 58.5 82.5	43.0 62.0 57.0 88.0	4 450 5 950 6 000 8 400	4 350 6 300 5 800 8 950	9 400 8 500 8 000 7 000	11 000 10 000 9 400 8 200	NU208 NU2208 NU308 NU2308	NJ NJ NJ NJ	NUP NUP NUP NUP	N N N	0.378 0.490 0.658 0.951
45	85 85 100 100	19 23 25 36	1.1 1.1 1.5 1.5	1.1 1.1 1.5 1.5	46.0 61.5 74.0 99.0	47.0 68.0 71.0 104.0	4 700 6 250 7 550 10 100	4 800 6 900 7 250 10 600	8 400 7 600 7 200 6 300	9 900 9 000 8 400 7 400	NU209 NU2209 NU309 NU2309	NJ NJ NJ NJ	NUP NUP NUP NUP	N N N	0.432 0.530 0.877 1.270
50	90 90 110 110	20 23 27 40	1.1 1.1 2.0 2.0	1.1 1.1 2.0 2.0	48.0 64.0 87.0 121.0	51.0 73.5 86.0 131.0	4 900 6 550 8 850 12 300	5 200 7 500 8 800 13 400	7 600 6 900 6 500 5 700	9 000 8 100 7 700 6 700	NU210 NU2210 NU310 NU2310	NJ NJ NJ NJ	NUP NUP NUP NUP	N N N N	0.470 0.571 1.140 1.700

KYK

Cylindrical Roller Bearings

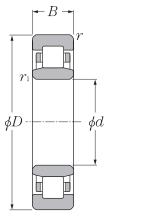


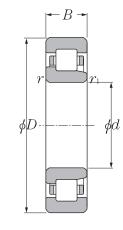

Type NJ

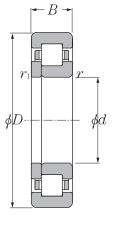
−B ¬

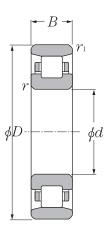
П

Π


Type NUP


Type N


d 55~85mm


	Boundary dimensions					Basic lo ic static	oad ratings dynamic	static	Limiting	speeds	Be	earing n	umbers		Mass
		mm	ı		dynam	kN	· · · · ·	(gf	mi	n-1	type	type	type	type	kg
d	D	В	r _{s min}	r _{1s min}	C _r	Cor	C _r	Cor	grease	oil	NU	NJ	NUP	N	(approx.)
	100	21	1.5	1.1	58.0	62.5	5 900	6 350	6 900	8 200	NU211	NJ	NUP	Ν	0.638
55	100	25	1.5	1.1	75.5	87.0	7 700	8 900	6 300	7 400	NU2211	NJ	NUP	Ν	0.773
•••	120	29	2.0	2.0	111.0	111.0	11 300	11 400	5 900	7 000	NU311	NJ	NUP	Ν	1.450
	120	43	2.0	2.0	148.0	162.0	15 100	16 500	5 200	6 100	NU2311	NJ	NUP	Ν	2.170
	110	22	1.5	1.5	68.5	75.0	7 000	7 650	6 400	7 600	NU212	NJ	NUP	Ν	0.818
60	110	28	1.5	1.5	96.0	116.0	9 800	11 800	5 800	6 800	NU2212	NJ	NUP	Ν	1.060
00	130	31	2.1	2.1	124.0	126.0	12 600	12 900	5 500	6 500	NU312	NJ	NUP	Ν	1.800
	130	46	2.1	2.1	169.0	188.0	17 200	19 200	4 800	5 700	NU2312	NJ	NUP	N	2.710
	120	23	1.5	1.5	84.0	94.5	8 550	9 650	5 900	7 000	NU213	NJ	NUP	N	1.020
65	120	31	1.5	1.5	120.0	149.0	12 200	15 200	5 400	6 300	NU2213	NJ	NUP	Ν	1.400
00	140	33	2.1	2.1	135.0	139.0	13 800	14 200	5 100	6 000	NU313	NJ	NUP	Ν	2.230
	140	48	2.1	2.1	188.0	212.0	19 100	21 700	4 400	5 200	NU2313	NJ	NUP	Ν	3.270
	125	24	1.5	1.5	83.5	95.0	8 500	9 700	5 500	6 500	NU214	NJ	NUP	Ν	1.120
70	125	31	1.5	1.5	119.0	151.0	12 200	15 400	5 000	5 900	NU2214	NJ	NUP	Ν	1.470
10	150	35	2.1	2.1	158.0	168.0	16 100	17 200	4 700	5 500	NU314	NJ	NUP	Ν	2.710
	150	51	2.1	2.1	223.0	262.0	22 700	26 700	4 100	4 800	NU2314	NJ	NUP	Ν	3.980
	130	25	1.5	1.5	96.5	111.0	9 850	11 300	5 100	6 000	NU215	NJ	NUP	N	1.230
75	130	31	1.5	1.5	130.0	162.0	13 200	16 500	4 700	5 500	NU2215	NJ	NUP	Ν	1.550
15	160	37	2.1	2.1	190.0	205.0	19 400	20 900	4 400	5 200	NU315	NJ	NUP	Ν	3.280
	160	55	2.1	2.1	258.0	300.0	26 300	31 000	3 800	4 500	NU2315	NJ	NUP	Ν	4.870
	140	26	2.0	2.0	106.0	122.0	10 800	12 500	4 800	5 700	NU216	NJ	NUP	N	1.500
80	140	33	2.0	2.0	147.0	186.0	15 000	19 000	4 400	5 100	NU2216	NJ	NUP	Ν	1.930
00	170	39	2.1	2.1	190.0	207.0	19 400	21 100	4 100	4 800	NU316	NJ	NUP	Ν	3.860
	170	58	2.1	2.1	274.0	330.0	27 900	34 000	3 600	4 200	NU2316	NJ	NUP	Ν	5.790
	150	28	2.0	2.0	120.0	140.0	12 300	14 300	4 500	5 300	NU217	NJ	NUP	N	1.870
85	150	36	2.0	2.0	170.0	218.0	17 300	22 200	4 100	4 800	NU2217	NJ	NUP	N	2.440
00	180	41	3.0	3.0	212.0	228.0	21 600	23 300	3 900	4 600	NU317	NJ	NUP	Ν	4.540
	180	60	3.0	3.0	315.0	380.0	32 000	39 000	3 400	4 000	NU2317	NJ	NUP	Ν	6.700

Cylindrical Roller Bearings

ΚΥΚ

Type NU

Type NJ

Type NUP

Type N

d 90~100mm

	· · · · · · · · · · · · · · · · · · ·						oad ratings		Limiting	speeds	В	Mass			
		mm	ı		dynami	ic static kN	dynamic kį	static gf	min ⁻¹		type type		type	type	kg
d	D	В	r _{s min}	r _{1s min}	C _r	Cor	C _r	Cor	grease	oil	NU	NJ	NUP	N	(approx.)
90	160 160 190 190	30 40 43 64	2.0 2.0 3.0 3.0	2.0 2.0 3.0 3.0	152.0 197.0 240.0 325.0	178.0 248.0 265.0 395.0	15 500 20 100 24 500 33 500	18 100 25 300 27 100 40 000	4 300 3 900 3 700 3 200	5 000 4 600 4 300 3 800	NU218 NU2218 NU318 NU2318	NJ NJ NJ NJ	NUP NUP NUP NUP	N N N	2.300 3.100 5.300 7.950
95	170 170 200 200	32 43 45 67	2.1 2.1 3.0 3.0	2.1 2.1 3.0 3.0	166.0 230.0 259.0 370.0	195.0 298.0 285.0 460.0	16 900 23 500 26 400 38 000	19 900 30 500 29 500 47 000	4 000 3 600 3 400 3 000	4 700 4 300 4 000 3 500	NU219 NU2219 NU319 NU2319	NJ NJ NJ NJ	NUP NUP NUP NUP	N N N	2.780 3.790 6.130 9.200
100	180 180 215 215	34 46 47 73	2.1 2.1 3.0 3.0	2.1 2.1 3.0 3.0	183.0 258.0 299.0 410.0	217.0 340.0 335.0 505.0	18 600 26 300 30 500 42 000	22 200 34 500 34 500 51 500	3 800 3 500 3 300 2 900	4 500 4 100 3 800 3 400	NU220 NU2220 NU320 NU2320	NJ NJ NJ NJ	NUP NUP NUP NUP	N N N	3.330 4.570 7.490 11.700